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Overview:  CCS-6, Statistical Sciences Group

• Introduction to CCS-6
– History/Mission/Vision
– People
– Technical Capabilities
– Customers/Projects

• Technical Mini-Briefs
– Reliability of a Complex System,                      

Christine Anderson-Cook
– Combining Computer Models and Experiments,    

Dave Higdon

• Wrap-Up, Dave Higdon
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Statistical Sciences Group

History:
Founded as the Statistics Group in 1967, the group will 
celebrate its 40th Anniversary in 2007.

Vision:
Achieve excellence in development of techniques for 
collecting, analyzing, combining, and making 
inferences from diverse qualitative and quantitative 
information sets such as experiments, observational 
studies, computer simulations, and expert judgment.
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Statistical Sciences Group

Mission:
Bring statistical reasoning and rigor to multi-disciplinary 
scientific investigations through development, application, 
and communication of cutting-edge statistical sciences 
research. 

Action:
Work in partnerships with scientists, engineers and policy 
makers within and outside the Laboratory to solve problems 
of national importance. 
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Technical Capabilities

• Data Analysis and Computational Statistics

• Theory and Methods for Computer Model Evaluation

• Monte Carlo Methods

• Reliability

• System Ethnography and Qualitative Modeling

• Information Integration Technology 

• Uncertainty Quantification, Statistical Bounding

• Design and Analysis of Experiments

• Biological Sciences Applications
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CCS-6 Projects and Customers

• Diverse project/customer base.

• Provide statistical expertise in a variety of 
customer relationships.

• Many collaborative projects in both lead 
and support roles.
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Selected Projects Led by CCS-6
• Design Agency System Point of Contact for Reliability (DASPOC) work for Nuclear 

Weapons Program
• Enhanced Reliability Modeling for Nuclear Weapons Program
• Computer Model Evaluation for Weapons Physics for X Division
• Joint Munitions Project – DoD
• Sampling Strategies for BIONET for DTRA/DHS
• Model Evaluation Methods for Procter & Gamble 
• Shelf-life Modeling for Formulated Products for Procter & Gamble
• LDRD – Design of Experiment Construction and Assessment
• Institutional Program Development – Design and Analysis of Experiments and 

Sampling
• TOW Missile Analyses for Marine Corps Programs
• Ballistic Missile Defense for Missile Defense Agency
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Selected Projects Supported by CCS-6
• Reliability, Statistical Support for ESA Surveillance Team
• Significant Finding Investigations for the Nuclear Weapons Program
• Statistical sampling, design, and analysis for W76 Life Extension Program
• Statistical Studies for CSA MTE
• Biosense for CDC
• Plutonium Metal Exchange Program
• Amplified Fragment Length Polymorphisms Studies with B Division
• Non-Proliferation detection with C-INC
• Remeasurement Database and Propagation of Variance Modeling for Nuclear Safeguards with 

NMT
• LDRD – Metabalomic Studies collaboration with B Division
• Biological Risk Assessment Team for Homeland Security led by D-4
• Infrastructure Issues for NISAC, CIP/DSS
• Statistical analyses for Pit Production for NMT



U N C L A S S I F I E D

U N C L A S S I F I E D

10 Computer, Computational, and Statistical Sciences DivisionLA-UR-06-4482

Stockpile Reliability Assessment - Summary

• Goal/Objective: The goal of this project is to develop a 
dependable and cost-effective suite of statistical 
methodologies and tools to assess the reliability of 
weapons stockpiles. 

• Approach
– Methodological development

– information integration
– uncertainty quantification with heterogeneous data

– Applications collaboration
– Tool development

– software for rapid development of systems and statistical models
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Collaborators and Customers

• DoD
– MCPD Fallbrook (TOW)
– NSWC Corona (RAM, ESSM)
– NSWC Yorktown (AMRAAM)
– AMCOM/RDEC (Stinger)

• DOE
– LANL Enhanced Surveillance 

Campaign
– LANL Core Surveillance
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Group TSMs Involved with Work
• Christine Anderson-Cook

• Cheryll Faust

• Todd Graves

• Michael Hamada

• Richard Klamann

• Andrew Koehler

• Earl Lawrence

• Harry Martz

• Shane Reese

• Benjamin Sims

• Scott Vander Wiel

• Alyson Wilson

• Greg Wilson
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The fundamental question is how to assess 
stockpiles as they change over time.

• Stockpiles change over time due to materials 
degradation, life-extension programs, maintenance, use, 
and other factors. 

• Assessment requires 
– the development of system models that capture parts, functions, 

dynamics, and interactions
– the integration of multiple data sources, including historical data, 

surveillance testing, accelerated life testing, computer model 
output, and materials characterization.
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The (growing) Challenge

Suppose that we are trying to assess a stockpile that has
– Multiple variants,
– Multiple data sources,
– Distributed expertise,
– Limits on functional testing

and that we want
– A numerical estimate of current reliability and performance based on 

individual and group characteristics,
– A prediction of how reliability and performance change over time,
– Uncertainties on the estimates and predictions,
– A system description that captures stockpile environments and use 

dynamics. 
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Combine all available information to understand 
uncertainties in system reliability and performance.

• Data is often available 
from many different 
experiments: flight tests, 
component tests, 
accelerated life tests.

• GROMIT allows us to 
understand what the 
data tells us about the 
system.

• We also develop 
statistical methods to 
formally combine the 
information into a unified 
system reliability 
estimate.
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GROMIT allows us to combine information from 
different experts into an integrated system view.

• Different subject 
matter experts 
understand different 
parts of the system.

• GROMIT highlights 
potential differences 
in system 
assumptions and 
understanding from 
various experts, to 
create a more 
accurate system 
representation.

• Effective assessment 
requires an integrated 
system view.
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• Model contains a reliability distribution for each 
component, as well as how the components are 
combined to give system

• For basic model:
– Reliability distribution for each component as a function of age will 

be estimated from the data and any expert knowledge that we 
wish to incorporate

– Components combine into whole system (serially or with 
redundancy to reflect design of system)

• Other aspects:
– Component reliability will be estimated by using both flight and

component quality assurance measures
– Different variants of systems are possible

Overview of Statistical Model
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Bayesian Analysis

• Capability to easily incorporate expert knowledge about 
reliability for individual components, through informative 
priors

• Using special-purpose MCMC programming packages, 
YADAS

• Analysis could also be programmed in other languages 
as well (eg. R, S-Plus, WinBugs)

• Computationally quite intensive

• http://yadas.lanl.gov
• Control over algorithm choices
• “Solves” broader class of models
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Translation of Data – Full-System Data

• Need to translate flight successes and failures into 
information about the individual components of the 
system



At least one of these failed

Once a system fails, no info about 
components in later phases

Specific component failed
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Translation of Data – Component Quality Assurance Data

• Some components may not have 
any quality assurance data
• Some components may have 
multiple measures
• Specification limits can be Upper 
and Lower, Lower Only, Upper Only
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• To combine the data from these different data sources, we 
need an approach that allows flexibility:
– Ability to incorporate expert knowledge of system
– There is a considerably variability in how much data is observed for 

different pieces of the system
– Not all components will have quality assurance data
– The specification limits are thought to be approximations of when the 

part will fail, but do not necessarily match exactly with the flight data
– Observed flight failure modes will not necessarily specify the failure 

of every component
– There is frequently ambiguity about which component failed during 

flight testing

Integrating Components of Model into Unified Analysis



Including full-system data in the posterior distribution

• Define p1i , p2i , and p3i to be the probability that components 
1,2,3 work in the ith test

• These are functions of the age of the ith missile and of the 
unknown parameters, which we will define later

• For a very simple system with 2 components, we obtain 
terms like (p1ip2i)                                     
{p1i(1-p2i)},                                                             
and {1-p1ip2i},                                                            

• For a more complex system, we might obtain   
(p1ip2i p3ip4i p5ip6i p7ip8i)                                             
or (p1ip2i p3ip4i (1- p5ip6i))

Both components worked
Component 1 worked, but comp 2 failed

At least one of Comp 1 or 2 failed

All 8 components worked
At least one of C5 or C6 failed
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Models for the QA measurements

• Denote the ith component QA measurement by Ci. It was taken from 
a missile with age Ai. 

• Assume Ci ~ N(αLi + βLiAi, γLi
2): linear regression

• α’s have prior mean to match expected proportion of failures, β’s
should be negative

• Generates normal density terms in the posterior

Age = 0
Age = 40 months
Age = 90 months

α
β
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Comparing Sources of Data

• Both sources of data provide information about the shift of 
reliability over time
From QA data, we obtain the 
mean of the characteristic at 
each time

From the flight data, we obtain 
a proportion of success/failure 
at each time

T1: 27 of 32
T2: 31 of 39
T3: 11 of 16
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Model Analysis Outputs

• Component specific reliability estimates
– For all observed times
– For future times

• System level reliability estimates
– For all observed times
– For future times

• Information about how closely the current specification 
limits match what has been observed
– This could be helpful for understanding the actual performance 

(i.e. what values of some of the quality assurance measures are 
actually associated with failures)



Component Reliability Estimates

• For each component in the system, we can obtain 
estimates for its reliability at any age

Each component has 
its own summary 
with potentially 
different reliability 
and precision

No sign of 
any aging

Some trend in 
quality data, 
but minimal 
observed aging

Some aging

More rapid 
aging

It is not uncommon to have 
many components showing 
little or no aging, while 
others are the main drivers 
of the system reliability



System Reliability Estimate

Stage 1

C1 C2 C3

Stage 8

C28 C29 C30

System
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System Reliability at any age is the product of all of 
the component reliabilities in a serial system

P(system success) = function of 
component reliabilities



System Reliability for Variants

Variant 1 Variant 2

Recall for some systems there will 
be variants with many common 
parts, but some that are different. 
With this approach we can assemble 
a system estimate for any collection 
of components
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Current Research
• There are many enhancements to the model which will 

make it increasingly flexible for variations in the data. We 
are currently working to include:
– Incorporating additional system level covariates (e.g., Storage 

patterns, usage patterns)
– More flexible types of quality assurance data (pass/fail, categorical, 

ordinal data)
– Incorporating alternate data sources: maintenance, accelerated 

testing 
– Improving global summaries of stockpile reliability
– Resource allocation strategies for collecting future data, based on 

current understanding of system and cost



Conclusions

• Modeling system reliability as a function of component 
reliability allows for additional sources of data to be 
included

• Extensive simulation study currently being conducted to 
help determine which system and data characteristics are 
most influential on accuracy and precision
– Considered:

– System complexity
– Pattern of reliability over time
– Number of variants
– Amount and distribution of data over time
– Amount and distribution of data between different data sources
– Priors (diffuse, informative and correct, informative and incorrect)
– Different data used: SF, SF CF, SF CS, SF CF CS

216 combos
x

10 reps

8 analyses

SF = system flight
CF = component flight
CS = component spec (QA data)

System characteristics

Data distribution
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Conclusions (continued)

• There can be important advantages (for both accuracy and precision) 
to incorporating the component flight (CF) and component 
specification (CS) data

• Collecting component flight data is more beneficial for complex 
systems

• Priors need to be carefully chosen to reflect current understanding of 
component and system reliability (both diffuse and incorrect 
informative priors can cause problems)

• Cost considerations for the relative cost of collecting these data 
should also be considered when determining which analysis is best



Inference Combining a Physics Model with Experimental Data
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Statistical Framework
A statistical framework allows us to account for observational, 
experimental, and model errors

Inference based on posterior
Uncertainty regarding θ, η, δ accounted for.
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Statistical Formulation
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Experimental Design to Account for Limited Simulator Runs
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Experimental Design to Account for Limited Simulator Runs

Example: OA-based LH design
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Modeling Simulator Response
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Accounting for Model Discrepancy



Certification Issues at LANL
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



We want to estimate fundamental cosmological parameters using 
functional data from multiple data sources and simulations

Linear spectrum only

Matter power spectrum
Linear theory

MC2

CMB anisotropy
CMBfast

WMAP year 3



Our analyses use statistical methods to combine different 
simulation codes and observational data

Define problem: identify 
data, parameters and 

ranges, outputs of 
interest, codes

Design simulation campaign 
over parameter ranges

Do 64, 128, …, runs of 
simulation code(s)

Statistical code (GPM)

Response surface 
for simulation code

Calibration 
distributions

Predictive 
distributions

Model 
inadequacy

Observed 
data



Data, parameter ranges, simulations

Calibration parameter ranges
Spectral index 0.8 to 1.4
Hubble parameter 0.5 to 1.1
Sigma 8 0.6 to 1.6
Omega CDM 0051 to 0.6
Omega baryon 0.02 to 0.12

Synthetic data were generated 
from a “true” cosmology using 
both linear pertubation theory 
and the particle mesh code MC2

QuickTim
TIFF (LZW) de

are needed to se

Log k

Log P

A single simulation



Response surface accuracy



Simulator emulation and sensitivity

Changes in the emulator prediction as each parameter is 
varied while holding the others at their midpoint.

Note: σ8 and ΩCDM have the largest effect on log P

Only σ8 has a substantial effect on nonlinear part of the mass 
power spectrum (logk < -1)



Calibration results for test problem

Linear only

Linear/nonlinear

Posterior distribution

Two separate analyses:
•Using data which lie on the 
linear part of the spectrum
•Using data over the entire 
spectrum


